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1 Introduction
Imaging optical systems may be divided by their performance into two broad categories;
those which operate at the di�raction limit, and those which operate below it. “Di�raction
limited” may be determined by any number of rules, e.g. the Maréchal criteria [1] or
Strehl ratio [2–5]. Systems near these limits typically have their performance analyzed
in wavefront space. Systems below the di�raction limit are most typically analyzed by
their Modulation Transfer Function (MTF) [6–9]. An unfortunate quality of MTF is that it
o�ers no insight into what is wrong if a test returns a negative result. This causes there to
be high cost or low precision associated with the correction of systems which had their
quality control performed via MTF measurement. In contrast, wavefront metrology allows
precise correction of alignment due to the more direct relationship between an optical
system’s parameters and its wavefront aberrations.

This thesis proposes to provide a bridge between the world of MTF and wavefront
metrology via a phase retrieval algorithm. This will allow the same MTF benches which
perform quality control measurements of many optics, in particular camera lenses, to also
serve as alignment stations. This can be considered an enabling technology for the next
generation of high resolution objective lenses suitable for ultra-high pixel density sensors.

2 Background

2.1 Wavefront Evaluation
It is often a requirement to evaluate the wavefront of an optical system. This can be directly
measured via interferometry [10], Shack-Hartmann [11, 12] or other similar wavefront
sensor technologies. For some systems, such as the Hubble Space Telescope [13] on-
orbit, these tests are infeasible. A system could also operate in a spectral band where
interferometers and wavefront sensors are not commonly available, such as long wave
infra-red. In cases where these methods cannot or will not be used, an alternative is
required.

In the mid 1970’s, Muller and Bu�ngton worked on correction of images with atmo-
spheric turbulence [14], a task that is can be summarized as compensating for the phase
errors of a system. Additionally, Gerchberg and Saxton [15] as well as Fienup [16] began
developing algorithms used to reconstruct the phase of something after its destruction by
a modulus operation. This task is known as phase retrieval. A comparison of techniques
can be found in [17] and a history in [18].

Phase retrieval applied to the recovery of the phase errors of an optical pupil has
become known as wavefront sensing. This technique was used to successfully diagnose the
error in the Hubble Space Telescope [19] and is planned to perform the �ne phasing of the
primary mirrors of the James Webb Space Telescope (JWST) [20]. It generally requires that
physical parameters be known, such as the shape of the pupil, the propagation distance
(focal length), the wavelength of light and sample (pixel) spacing in the capture plane.
The object is also usually a point source, and treated as known. These factors can all be
retrieved in favorable conditions, see e.g. [21, 22], but the more work the algorithm has to
do, the slower it will go and the lower the overall accuracy will be.
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2.2 Anatomy and Theory of an MTF Bench
An MTF bench must accomplish four tasks: (1) the projection of an object with known
spatial and spectral characteristics, (2) high speed mounting and pose of an objective under
test (OUT) with respect to that object at any desired angle or distance, (3) achievement of
oversampling to expand the applicable bandwidth of the system and avoid aliasing, and (4)
processing of the resulting image to yield an MTF measurement.

The principal components of an MTF bench are laid out in Figure 1. This particular
illustration indicates the geometry where the collimator is rotated and the objective platform
is static. An alternative exists where the objective platform is rotated and the collimator is
static. Optionally, a �lter can be installed before the di�user to adjust the spectral content
of the light. The object is most commonly either a pinhole or slit; these provide the easiest
task of extracting an MTF from the captured image and are known as the pinhole [23, 24]
and slit [25–27] methods of MTF measurement.

dθ

dz
dy

fc

(1) (2) (3) (4) (5)

fₒ

(6)

Fig. 1. Schematic of an MTF bench. (1) light source, (2) object (pinhole or slit(s)), (3)
collimator, (4) objective under test, (5) microscope assembly (objective and tube lens),
(6) detector. dθ, dy, and dz indicate axes of motion control. Elements 1-3 and 5-6 are
subsystems that move as independent assemblies with (4) �xed. Note that alternative
motion con�gurations exist.

An object O(u,v) at the focal plane of the collimator will map into the OUT’s image
plane with spatial dimensions x and y via the left-hand change of variables in Equation 1.
Similarly, the detector’s Point Spread Function (PSF), Gd (s, t) maps to x and y via the
right-hand change of variables in Equation 1.

u =m1x

v =m1y

s =m2x

t =m2y
(1)

These mappings are easily found via geometrical optics; the collimator and OUT form
one telescope, while the microscope objective and its tube lens form another. Each relays
an object from the focal plane of one component to the other. The value m1 = −fo/fc is
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the signed ratio of the OUT focal length to the collimator focal length. The valuem2 is a
property of the microscope objective for an appropriately paired tube lens.

After applying these changes of variables, we may express the �nal image as a double
convolution of the object O , OUT’s PSF H , and the MTF bench detector’s PSF Gd :

I (x ,y) ≈ O(x ,y) ∗ H (x ,y) ∗Gd (x ,y) . (2)

A convenient property of convolution is that it is simply a multiplication in the Fourier
domain,

I(νx ,νy ) ≈ O(νx ,νy )H(νx ,νy )Gd (νx ,νy ) (3)

where I, O,H , and Gd are the Fourier transforms of I , O , H , and Gd . H is known as the
Optical Transfer Function or OTF.

The relationship is approximate, as any wavefront error in the microscope assembly or
collimator will be combined with that of the OUT. This interaction occurs in a nontrivial
way and is usually of su�cient di�culty to account for that it is only mitigated by use of
high quality components [28].

An object pinhole of width α has a Fourier transform which is a jinc function, and the
rectangular elements of the detector of widths (wx ,wy ) have a Fourier transform which is a
separable product of sinc functions. Pixel crosstalk, response non-uniformity, dark current,
read noise and other artifacts must also be accounted for but have more complicated models
that are not presented in this text. By dividing I by the modeled components, we are able
to estimateH :

H(νx ,νy ) ≈
I(νx ,νy )

jinc
(

νρ
α/m1

)
sinc

(
νx

wx /m2

)
sinc

(
νy

wy/m2

) , νρ =
√
ν2x + ν

2
y . (4)

Note that some residual estimation errors remain due to wavefront errors in the micro-
scope assembly and collimator, but these are relatively small. In terms of system design,
consideringwx = wy and �xed, the values of α , fc , andm1 must be well chosen for the type
of lens to be measured. For a �xed fc , reducing fo will reduce the size of the image, using
fewer pixels on the detector and driving the system towards an undersampled regime. m1
must be balanced with fc to avoid being unnecessarily oversampled or being undersampled.
Table 1 provides two sample con�gurations for these parameters which are suitable for
use with a wide variety of camera lenses.

Con�guration α [µm] fc [mm] m1 [x]

1 12 350 20
2 50 600 50

Table 1. Two possible con�gurations for an MTF bench.

A third technique, known as the Slanted-Edge method [29–33], involves no auxiliary
optics and lacks these corrections in exchange for its own. Because there is no single
algorithm for the Slanted-Edge method, the corrections are a feature of the implementation
and not general. The technique is comprised of capturing an image of a white-black edge
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that is tilted by a small angle with respect to the pixel grid in order to achieve oversampling.
A discrete derivative produces the Line Spread Function (LSF), and the result is processed
as if it were acquired via the slit method.

Substantial material covering the theory of MTF and practice of its measurement can
be found in [28, 34].

2.3 MTF Test Routines
In this section, both common and state-of-the-art MTF measurement schemes are discussed
in addition to their relevance to wavefront sensing, and their output presented.

2.3.1 Through-Focus MTF

A through-focus MTF measurement is made by mounting an optic to the machine, doing a
coarse focusing, and then using automated scanning software to measure the MTF as a
function of focus position. The resulting data is two dimensional; a function of frequency
and focus. This provides the focus diversity needed by the wavefront sensing algorithm to
di�erentiate di�erent Zernike modes’ contributions to the wavefront. The graphical output
is shown in Figure 2 with only one of the tangential and sagittal axes plotted for clarity.
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Fig. 2. A plot of through-focus MTF.

2.3.2 MTF vs Field

MTF vs Field is the most common MTF measurement routine. The lens is mounted to
the machine and brought to best focus on-axis via a Through-Focus MTF measurement.
Without adjusting focus, the MTF is measured on axis and across a linear �eld of view
and reported at an ensemble of spatial frequencies for the tangential and sagittal azimuths.
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The resulting data is two dimensional, a function of �eld and frequency. This form of
measurement is not well suited to use as an input to a wavefront sensing algorithm due to
its lack of focus diversity. The graphical output is shown in Figure 3.
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Fig. 3. A plot of MTF vs Field for a wide-angle camera lens at an azimuth of
0° with respect to the x axis of the image plane. Solid lines for the tangential
orientation, dashed for sagittal.

2.3.3 MTF Full-Field Display

This is a newer technique described in [35]. It combines MTF vs Field measurements
along several image plane azimuths to produce data over the full �eld of view of an optical
system. This allows greater sensitivity to misalignment than an MTF vs Field measurement,
which is severely azimuthally undersampled by comparison. The resulting data is of three
dimensions: two axes of �eld and one of frequency. As this is only a 2 dimensional extension
of MTF vs Field measurements, the lack of focus diversity makes it similarly unsuitable for
wavefront sensing. Figure 4 shows the graphical output for the ν = 50 cy/mm plane.
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Fig. 4. A pair of MTF FFDs for the tangential and sagittal azimuths.

2.3.4 MTF vs Field vs Focus

MTF vs Field vs Focus is identical to MTF vs Field, except the focus position is re-centered
and scanned through focus at each �eld point. It produces a 3D dataset of �eld, focus, and
frequency. This is highly suitable for wavefront sensing over an extended �eld of view. If
combined with the MTF FFD technique above, this would enable the production of any
form of Full-Field Display, as is popular in the freeform optics community, from MTF data
in only a few hours. The graphical output is presented in Figure 5.
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Fig. 5. A display of MTF vs Field vs Focus for each of the tangential and sagittal
axes.

2.4 Why Not Use The Image?
The question may fairly be raised, “Why not use the image captured by the MTF bench?” The
answer has two components. (1), commercial MTF bench manufactures do not necessarily
provide access at all or easily to the image itself. (2) use of MTF allows application with
Slanted-Edge MTF measurements.
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3 Overview
I have extended the wavefront sensing toolbox to include usage of tangential and sagittal
MTF data as an input, aided by an above-average amount of focus diversity (21 focus
planes vs. 3 or 5 for image-based wavefront sensing). This has involved the extension
and performance optimization of existing Fourier optical modeling tools [36] in addition
to the from-scratch creation of a wavefront sensing program based on the L-BFGS-B
[37] implementation of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [38] nonlinear
optimization routine. The Metropolis-Hastings or “basinhopping” algorithm [39, 40] is also
used to facilitate pseudo-global parameter space search.

An exploration among 4 candidates for the best cost or objective function was done.
With the optimum cost function, an investigation was done into the ability of this az-
imuthally limited data to correctly retrieve wavefronts with coma and astigmatism of
arbitrary angle in the pupil plane, cases for which it was believed the algorithm would
succeed. Additional trials were done with arbitrary combinations of spherical, coma, and
astigmatism aberrations up to 8th order.

More than 3,000 simulations were performed to statistically analyze the e�ectiveness
of this method. These simulations include wavefronts that contain spherical aberration,
coma, and astigmatism up to 8th radial order but do not include higher azimuthal order
aberrations. Additionally, an ensemble of experimental trials were performed. The results
from each are presented.

4 Novelty
The novelty of this thesis lies in extending the wavefront sensing toolbox to work with
azimuthally limited MTF data. This would open a new application space for wavefront
sensing, utilizing commercial MTF instrumentation to collect data used to measure the
wavefront of an optical system. This includes but is not limited to usage to diagnose
misalignment of camera lenses based on their MTF test results and usage of slanted-edge
test results for Earth-facing satellites [41] based on ground-based targets to verify their
alignment.

While wavefront sensing has not been limited to the image-based techniques discussed
in Section 2.1, with extension to usage of scenes [42], spatial light modulation [43, 44], use
of surface plasmons [45], and use of holographic optics [46] among others, it has never
been done based on either the full 2D or azimuthally limited MTF.

5 Methods

5.1 Fourier Modeling
The pupil of an optical system can be modeled as

P(ξ ,η) = A(ξ ,η) exp[−i 2πλ ϕ(ξ ,η)] (5)

where P is the generalized pupil function, A is the transmission function, and ϕ is the phase
function [47, 48]. In our case, P models the exit pupil and we can paraxially approximate
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an optical propagation from an exit pupil plane to an image plane as a Fourier transform:

E(x ,y) = F {P(ξ ,η)} (6)

where E is the electromagnetic �eld in the image plane. This is the coherent PSF, whose
mod square is the incoherent PSF, which is referred to only as the PSF throughout this
document, as we are concerned with the incoherent case.

PSF(x ,y) =
��E(x ,y)��2 = E(x ,y)E∗(x ,y) (7)

The OTF is the Fourier transform of the PSF,

OTF(νx ,νy ) = F {PSF(x ,y)} (8)

normalized to unity at the origin, where we do not explicitly write the normalization, and
the MTF is the magnitude of the OTF:

MTF(νx ,νy ) =
��OTF(νx ,νy )

�� . (9)

The tangential and sagittal azimuths are two slices of the MTF, whose angles with respect
to the cardinal axes are de�ned by the angle the object makes with respect to the cardinal
axes. In this thesis, we will operate under the assumption that object is extended in y, and
thus a slice through x = 0 yields the tangential, and a slice through y = 0 the sagittal MTF.
The coordinate systems are shown in Figure 6 and sample of this process can be seen in
Figure 7. Note that in cases where the object is extended along a di�erent axis, a simple
rotation of the coordinate frame is the only change needed.

u

v ξ
η

x

y

Fig. 6. Schematic of optical propagation. Left to right: object plane, pupil plane, image plane. A
bounding box is drawn around the circular pupil to make more clear the Cartesian axes of ξ and
η. The u and y axes have arrows denoting the axis the object is extended in. Optical systems are
typically modeled as an object extended in y but not x unless otherwise necessary.
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Fig. 7. Left to right: phase error in pupil, PSF, MTF. For our object orientation convention, the
upper half of the νx = 0 slice is the tangential MTF, and the right half of the νy = 0 slice is the
sagittal MTF.

5.2 Numerical Implementation
In order to do these calculations numerically, we must correctly sample our functions to
avoid aliasing and FFT wrap around. We de�ne Q , the oversampling factor, to be

Q =
widtharray

widthpupil
. (10)

Q need not be an integer, and Q > 2 is required to avoid aliasing. We will operate at Q = 2,
which gives us Nyquist sampling in the image plane and minimizes array sizes, improving
speed. We will also not pad the PSF before computing the MTF, as it is assumed that there
is su�cient “empty” space surrounding the PSF to satisfy the windowing requirements of
FFTs. This is usually true with relatively low wavefront error.

The Fringe set of Zernike [49] polynomials will be used to model the wavefront in
terms of Hopkins [50] wavefront aberration-like components that are orthonormal over
the unit circle. Orthonormality gives each term unit variance.

We will focus on the monochromatic case, and choose λ = 0.55 µm as our wavelength,
roughly the mean wavelength for the visible band. An aperture of F/2.8 will be used, though
the aperture value is not of great importance, given the magni�cation discussed in Section
2.2.

[48, chapter 4] provides a detailed tutorial of this process. The python package prysm
[36] is made freely available by the author and is used as the embedded modeling tool in
this thesis.

5.3 Algorithm Architecture
Image-based and MTF-based wavefront sensing alike can be summarized as a nonlinear
optimization problem with embedded parametric optical modeling. There is a rich body of
prior and existing art in optimization theory, including numerous algorithms. In Fienup
group, it has been found that the L-BFGS-B routine for local parameter space search is
typically the best performing, both in terms of the accuracy of the result and speed of
convergence.

BFGS optimization methods are a class of quasi-Newton methods that utilize curvature
information to take a more direct path to local minima. They evaluate the cost function
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and its gradient at any given point in parameter space. A search direction is chosen, and
the gradient and cost function simultaneously minimized along a line in order to reach a
concave up critical point. Because both saddle points and minima are critical points, the
process begins again if termination criteria are not met. These criteria include but are not
limited to the production of a su�ciently small cost function, or exceeded time limit. The
algorithm is shown schematically in Figure 9. The embedded task of comparing the optical
model to the measured data is shown in Figure 8.

Zernike Coefficients Defocus ValuesEFL, XPD, mp, λ, 
A(ξ, η)

Measured MTFs

Ensemble of Pupil Models

Ensemble of PSFs

Ensemble of MTFs

Cost Function & Gradient
w.r.t. Zernike Coefficients

Fig. 8. Schematic summary of the optical model. The focal length or EFL of the system must be
given, in addition to the exit pupil diameter or XPD, pupil magni�cation mp , wavelength of light λ,
and pupil transmission function A. Zernike coe�cients are provided via user guess for the �rst
iteration, and the optimizer for the remainder of the process. The defocus values are coupled to the
through-focus and through-frequency MTF measurements provided to the algorithm.
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Initial Guess

Select Search Direction

Line Search Minimum

Perform Line Search 
(Evaluate Cost Function &
Gradient Along Line in

Parameter Space)

Evaluate Cost FunctionTermination Criteria
Satisfied

Termination Criteria Not
Satisfied

Satisfactory Wavefront
Estimate

Evaluate Cost Function
Gradient w.r.t Parameters

Fig. 9. Schematic of the L-BFGS-B optimization routine. The function e�ectively seeks critical
points, at which it terminates or changes direction. L-BFGS-B is distinguished from BFGS by storing
a reduced history of the gradient instead of requiring the full Hessian, which may not be available,
or may not �t in memory for large numbers of parameters. Note that Figure 8 is embedded in the
diamond that states “Evaluate Cost Function.”

It is also well understood that when the input guess is far from the true parameters,
a local search such as L-BFGS-B is susceptible to getting trapped in local minima. To
avoid this problem, a pseudo-global method of optimization is required. For this task, I
have selected to use the basinhopping [39, 40] algorithm. Brie�y, this algorithm tracks
the landscape of the cost function through parameter space during a local minimization
attempt with another method, such as L-BFGS-B used here. After a minima is reached,
a perturbation is made of the parameters. If all tests pass, including but not limited to a
not-too-large cost function value, lack of violation of parameter space boundaries, and not
lying very close to already explored regions of parameter space, a new local minimization is
performed. Across an ensemble of local minimization attempts, the cost function landscape
is mapped and the global minimum (hopefully) found. Basinhopping is also known as the
Metropolis-Hastings algorithm, and simulated annealing is a variation on it where the
temperature parameter, which controls the permissible uphill motion of a perturbation, is
slowly reduced over time.

Three subsets of the Fringe Zernike polynomials with index starting at one are used in
this thesis and will be annotated by the variable W, the �rst two are:

W1 = { Z4, Z9, Z15, Z25 }, (11)
W2 = { Z4, Z5, Z6, Z7, Z8, Z9, Z12, Z13, Z14, Z15, Z16, Z21, Z22, Z23, Z24, Z25 } (12)

where the former, W1 includes only terms of azimuthal order zero, corresponding to focus
and various kinds of spherical aberration up to 8th order. The latter, W2 includes additional
comatic and astigmatic terms, likewise up to 7th and 6th order respectively. A third, W3,
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is equivalent to W2 with the addition of Z10 and Z11; trefoil. These polynomials are
enumerated in Appendix A.

Perform Local Search

Perform Cost Function
Landscape Transformation

Accept Parameters Reject Parameters
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New Starting Point

Store Transformed
Landscape

Any Test Fails

Check Against Parameter 
Space Boundaries 

Not in Previously 
Tested Region 

Evaluate Temperature 
(Distance Traveled Uphill)
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Fig. 10. Schematic of the basinhopping pseudo-global optimization routine. The algorithm has
many moving parts, but is essentially a means of sampling a complicated function of many variables
without wasting time evaluating regions of parameter space very far from the ideal (truth) values.
Note that Figure 9 is embedded in the box that states “Perform Local Search.”

5.4 Cost Function Design
The cost function serves the purpose of turning a multivariate function into a scalar. In
wavefront sensing, the term data consistency is often used to describe a family of cost
functions that are designed to have a value of 0 when experimental data and the model
match, and values strictly greater than zero when they do not. It is important that the
cost function not be able to take on negative values as the optimizer will seek to �nd the
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smallest possible cost function value, and we wish for the minimum cost function value to
have the best agreement between the model and data (and hopefully, the true and retrieved
wavefronts).

In the case of image-based wavefront sensing, there are no general assumptions that
can be made of the image data and the geometry of its intensity. In contrast, MTF is
naturally constrained by the di�raction limit and thus smaller at high frequencies than low
frequencies, though this guarantee is not necessarily monotonic. The di�erence of two
small numbers at high frequency tends to be smaller than the di�erence of two potentially
larger numbers at a lower frequency; division of the data by the di�raction limit will serve
as an equalizer, undoing the deemphasis on high frequencies caused by the di�raction
limit. The MTF data is numerical in nature, so we de�ne it to be an array of Nν elements
indexed by n, with frequency spacing ∆ν , chosen arbitrarily to be 10 cy/mm, which gives
50 to 100 samples in the frequency axis for the F/#s of interest. This would be adjusted for
very fast or very slow lenses. We also de�ne the following symbols which will be used in
the cost function:

D ≡ D(n∆ν ) data
M ≡ M(n∆ν ) model
L ≡ L(n∆ν ) di�raction limit

each has a T and S variant to denote the tangential and sagittal azimuths, except for L
which is rotationally invariant. We will use D, M, and L for shorthand of their fully explicit
forms. We will also make explicit two ways to compute the di�erence, or distance between
two datasets. The �rst is the Manhattan or cityblock distance, which is simply the sum of
the magnitude of di�erences of the data:

dM =
Nν∑
n

|D −M| . (13)

The second is the sum of the square of di�erences, which is equivalent to a Euclidean
distance, less the square root:

dSSD =
Nν∑
n

(D −M)2 (14)

The removal of the square root eliminates a cusp at the origin that prevents the function
from being everywhere di�erentiable.

It was initially proposed to use the same type of cost function as is commonly used in
image-based wavefront sensing,

C1 =
∑
focus

Nν∑
n

(DT −MT)
2 + (DS −MS)

2︸                           ︷︷                           ︸
core

(15)

which is the unnormalized variant of dSSD, with the core annotated. The four options
analyzed have a core which is either normalized by di�raction or not,

D −M
L

(D −M)
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and utilize either dM or dSSD. All options considered share the coe�cient

∆ν

Nfocusνmax

whose numerator converts the summation over ν into a numerical integration, and whose
denominator normalizes both the focus and frequency dimensions. With this normalization,
L1 norm-type cost functions are similar in magnitude to the residual RMS wavefront error
(RMS WFE) which allows the cost function to be easily used to estimate the accuracy of
the result.

500 sample wavefronts were synthesized by drawing from a uniform random probability
density function spanning the range [0, 0.25] and assigning this value to the coe�cient of
Z9. Z16 and Z25 were then set to negative one half of Z9, and positive one fourth of Z9
respectively, forming a geometric series. Two distinct random Gaussian distributions of
mean 1 and standard deviation 0.25 were generated, and the values of Z16 and Z25 were
multiplied by these values to add noise. This produces sets of { Z9, Z16, Z25 } variables that
have a semi-�xed relationship that is realistic, but are allowed to vary to avoid absolutely
enforcing a particular relationship on the Zernike modes.

Each sample wavefront was used to synthesize through-focus MTF data across 21 focus
planes corresponding to ±2λ PV of wavefront defocus and with ν ranging from 10 to νc in
steps of 10 cy/mm. Where νc is not an integer multiple of 10, the highest value modulo
10 that is lower than νc is used. E.g. if νc = 584 cy/mm, sampled values of ν would range
from 10 to 580 cy/mm in steps of 10. Monochromatic light of wavelength 550 nm was
used. The wavefront sensing algorithm was con�gured to use the relevant cost function,
an initial guess of no wavefront errors, and up to 25 random starting guesses generated by
the basinhopping algorithm. Optimization would terminate early if a su�ciently low cost
function value, corresponding to about better than λ/1000 RMS, was achieved. No noise is
included in these simulations. Stopping at this level leaves an order of magnitude budget
for experimental uncertainty and noise before the 1 nm RMS level of accuracy is crossed.

Each of the four candidate cost functions were applied to all 500 of these simulations
and the results compared. The full dataset for all four is shown in Figure 11. It is interesting
that the sum of square of di�erences error metric has a looser grouping, spanning almost
two orders of magnitude. It appears that this metric is easily able to dodge local minima
far from the truth, but cannot escape local minima near the global minimum.
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Fig. 11. Scatterplot of residual RMS WFE vs true RMS WFE on linear-log scale for each of the
four cost function schemes. Attention should not be paid to the lower overall residual RMS WFE in
some cases; most cases terminated optimization for �nding a su�ciently low cost function, which
was not �nely tuned to cause termination at the same residual RMS WFE level.

The datasets were collapsed into just their residual RMS WFE values, and Gaussian
Kernel Density Estimation (KDE) [51, 52] used to �t a probability density function. This is
a more robust form of producing a histogram, and allows the process to be done with a
logarithmic x axis. The results are presented in Figure 12 and show that the non di�raction
normalized sum of square of di�erences cost function scheme performs best, having the
largest area under the curve in the region over [0, λ/1000] residual RMS WFE. The success
rates of the various schemes are summarized in Table 2. Normalizing by the di�raction
MTF did not improve the robustness of the optimizer, in both cases actually decreasing the
success rate. The sum of squares of errors metric is more able to avoid local minima and
retrieve the true wavefront.
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Fig. 12. Residual RMS WFE probability density for each cost function scheme. Attention should not
be paid to the lower overall residual RMS WFE in some cases; most cases terminated optimization
for �nding a su�ciently low cost function, which was not �nely tuned to cause termination at the
same residual RMS WFE level.

Distance Normalized Success [%]

Manhattan No 89.2
Manhattan Yes 84.4

sum of squares No 100
sum of squares Yes 84.0

Table 2. Summary of success rate of various cost function de-
signs. The non di�raction normalized sum of square of di�erences
performs best.

As a result of this study, the following cost function was adopted for the remainder of
the thesis:

C =
∆ν

Nfocusνmax

∑
focus

Nν∑
n

|DT −MT |
2 + |DS −MS |

2 . (16)

It can be summarized as the square of the normalized area between the measured and
modeled MTF. Its square root will be used on most plots concerning the cost function, as
that quantity is more proportional to the residual RMS WFE.
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6 Results

6.1 Rotationally Invariant Aberrations
The wavefront generation routine described in subsection 5.4 was repeated, with the
maximum RMS WFE limit increased to 0.35λ. The cost function shown in Eq. 16 was
applied to all 500 trial wavefronts. A sample wavefront is shown in Figure 13 as well as the
retrieved wavefront, their di�erence, and the cost function history.
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Fig. 13. Top, left to right: true wavefront, retrieved wavefront, di�erence. Bottom:
cost function (lefthand y axis) and residual RMS WFE (righthand y axis) history. This
result belongs to a class that converge extremely quickly, requiring only 2 iterations of
basinhopping.

With the increased wavefront error of the simulations, the success rate dropped to
84.6%, with mixed results in the range [0.247,0.333] λ RMS. Some of these RMS WFE values
were possible in the cost function design trials but did not occur. It seems that the algorithm
is not guaranteed success in this range, unlike the range spanned by about [0, 0.25] λ RMS.
In cases where success did not occur, failure was absolute, with the optimizer failing to
converge at all and the cost function value staying very large.
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Fig. 14. Scatterplot of the square root of the cost function value vs residual
RMS WFE. A nearly perfect proportionality can be observed between the two.
Note as well that a large void exists between cases of failure and success.

Figure 14 shows a scatterplot of the square root of the cost function vs the residual RMS
WFE for the lowest cost function value found in all 500 trials. Near perfect proportionality
is observed, implying

√
C is a very good predictor for the residual RMS WFE.

In the example shown, basinhopping has not yet distinguished itself in any meaningful
way from random starting guesses, a practice that has some heritage in image-based wave-
front sensing. With only two iterations of the algorithm, each including many iterations
of the local search, it is guaranteed that the transformed cost function landscape is too
incomplete to be used to �lter out new guesses. The step size chosen is 0.02 λ RMS for
the perturbation of each parameter, which is fairly well tuned to maneuver around local
minima near the global minimum.

When the starting guess is far enough from the global minimum that L-BFGS-B will
become trapped in a distant local minima, this step size may be inappropriate; Figure 15
shows the same type of plot as Figure 13, but for where the guess is very far from the
truth. Here, basinhopping makes 21 random starts and accumulates enough knowledge of
the cost function landscape to move into a region within L-BFGS-B’s capture range, and
optimization is successful. All of the 500 trial wavefronts fall into one of two cases: one
where less than three random starts guesses were needed, in which case basinhopping is
neither helpful nor harmful, and one where more than �fteen random starts were needed,
and basinhopping’s accumulated knowledge is likely to have been helpful.

The results are summarized in Figure 16, which shows the clear demarcation between
success and failure (left or right of 10−2) while also showing the overwhelming success
rate of MTF-based wavefront sensing for these types of wavefronts.
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Fig. 15. Cost function and residual RMS WFE history, as in Figure 13, but for a
wavefront where L-BFGS-B would become trapped in a local minima severely
far from the global minimum. Note that

√
C and the residual RMS WFE di�er

when very far from the truth, but converge to similar values near truth.
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Fig. 16. Residual RMS WFE probability density of the 500 trials of mixed
spherical aberration over a range of [0, 0.35] λ true RMS WFE.

6.2 Comatic Aberrations
Fringe Zernike terms with azimuthal order greater than zero occur in pairs, e.g. Z7 and
Z8 are primary coma. Each pair can alternatively be characterized by a magnitude |Z| and
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angle Θ(Z):

|Z| =
√
Z 2
x + Z

2
y Θ(Z) = arctan

(
Zy

Zx

)
. (17, 18)

Given the magnitude and angle, we can easily express the x and y components:

Zx = |Z| cos(Θ) Zy = |Z| sin(Θ) . (19, 20)

Coma with magnitude 0.05, 0.1, or 0.2 λ RMS and an azimuth between 0 and 90 degrees in
5° steps was combined with primary spherical aberration (Z9) having magnitude 0, 0.05,
0.1, and 0.2 λ RMS. This produced a total of 228 unique wavefronts. Due to the symmetry
of these terms, angles from 90 to 180 degrees are anti-symmetric to angles from 0 to 90
degrees, and need not be evaluated. Three samples are shown in Figure 17. This allows
us to probe if coma and spherical aberration can be distinguished as a function of the
orientation of the non rotationally invariant aberration in the pupil, as well as a function
of their relative magnitudes. Figures 19-21 show the residual RMS WFE as a function of the
angle of coma in the pupil and a �xed amount of primary spherical aberration. On each
plot, success may loosely be de�ned as dropping o� of the y axis, whose minimum is λ/1000
RMS. This is an exceptionally good result in practice, but due to noise not being included
in these simulations, a margin is left before reaching the 1 nm RMS level of accuracy. W3
is used during optimization, which allows both astigmatism and trefoil to be estimated as
well as higher radial order terms, that are not present in the data.
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Fig. 17. Three sample wavefronts from the batch of 228. Note that the orientation of coma is
free to vary, there are cases where spherical aberration dominates (left), where coma and spherical
aberration are roughly equal (center), and where coma dominates (right).
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Fig. 18. Residual RMS WFE as a function of the orientation of
primary coma in the pupil plane for the case where there is no
spherical aberration.

The results with no spherical aberration are somewhat chaotic. There is a substantial
dependence on the angle of coma in the pupil plane that determines whether optimization
will be successful or not. The angles of 0, 45, and 22.5 degrees have some measure of
specialness, as they are when the di�erence between the tangential and sagittal MTF
caused by coma are maximized, globally minimized, and locally minimized respectively.
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Fig. 19. Residual RMS WFE as a function of the orientation of
primary coma in the pupil plane for the case where there is 1/20
λ RMS of spherical aberration.
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Fig. 20. Residual RMS WFE as a function of the orientation of
primary coma in the pupil plane for the case where there is 1/10
λ RMS of spherical aberration.

When spherical aberration is reduced, the results are increasingly chaotic. When
there is only λ/20 coma RMS, the optimizer appears to be able to accurately estimate the
underlying spherical aberration very well. When the amount of coma is raised to λ/10 or
λ/5, success or failure is very chaotic, and there appear to be a tremendous number of local
minima due to mis-estimation of higher order coma terms.
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Fig. 21. Residual RMS WFE as a function of the orientation of
primary coma in the pupil plane for the case where there is 1/5 λ
RMS of spherical aberration.
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Fig. 22. Top left: wavefront, top left: 2D MTF. Bottom: through-focus tangential and sagittal MTF.
Data for 0.2 λ RMS of primary coma aligned with the cardinal axes. Note the x-like pattern in the
2D MTF, and inverse-like relationship between the tangential and sagittal MTF through focus.
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Fig. 23. Equivalent to Figure 22 for 0.2 λ RMS of primary coma aligned at 45° to the cardinal axes.
The through focus MTF lacks curvature that would be associated with a term of even radial order,
but is identical for T & S. The optimizer struggles to reconcile this with the Zernike terms, since
secondary coma at the same orientation appears quite similar.

In the case where the coma is aligned to the cardinal axes, the inverse-like relationship
between the tangential and sagittal MTF is reminiscent to the twin through-focus peaks of
astigmatism, and the optimizer at times has di�culty distinguishing the two aberrations.
In the case where the coma is 45° o� of the cardinal axes, the MTF is more similar to the
di�raction MTF, with enhanced depth of �eld at lower spatial frequencies. Because the x
and y elements of the coma must be covariables to improve the match between the model
and data, but adjusting either alone would worsen the match, the optimizer has di�culty
�nding the solution. There are also many local minima caused by mis-estimation with
higher order terms.

In the case where coma and spherical are both present, and their magnitudes take a
reasonable ratio of e.g. 4:1 or less, the characteristic features of spherical aberration – the
curvature of the MTF vs frequency vs focus – and extra features related to coma (extended
depth of �eld at lower frequencies, asymmetric “fringes” at extremes of focus) are visible.
More speci�cally, these features are related to the odd radial order of coma, which is shared
by trefoil. In this case, mis-estimation occurs due to trefoil in addition to higher order
comatic terms. There is no apparent di�culty estimating astigmatism, as it is always near
zero in the results.
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Fig. 24. Equivalent to Figure 22 for 0.1 λ RMS of primary coma aligned at 45° to the cardinal axes
with 0.1 λ RMS of primary spherical. The MTF has the curvature characteristic of a Zernike mode
of even radial order, but the ripples at the extremes of focus are di�erent to if there were no coma.
These ripples allow the optimizer to distinguish the aberrations.

Figure 25 shows the probability density of the residual RMS WFE. Figure 26 shows the
probability density of the �nal cost function value. Because the dip in the distribution is
not as sharply de�ned as the residual RMS WFE case, it can be inferred that there are some
uniqueness issues with this limited Tangential and Sagittal data.

Figure 27 shows an example of the input, output, di�erence, and trajectory of the opti-
mizer for only coma of relatively high magnitude at a small angle to the cardinal axes. This
is one of the relatively successful cases, converging to λ/195 RMS. While it is categorically
a success, the cost function and residual wavefront error can be observed in the history
plot, as well as the ambiguity between low and higher order coma. Note that from the
0th to the 225th iteration, the optimizer repeatedly converges from di�erent basinhopping
starting points, but the residual RMS WFE does not change meaningfully. It is only from
iteration 225-420 that the optimizer and residual RMS WFE simultaneously converge, but
the match is still imperfect. Note that in the �nal four iterations of basinhopping (x-axis
about 440-500th iteration) the optimizer is exploring a di�erent region of parameter space
and returns to the initial condition of cost function convergence but no convergence in
terms of residual RMS WFE. The overall success in these trials was 32.5%, de�ned as when
the residual RMS WFE is less than λ/100. This is a reduced standard compared to that used
with spherical aberration. The �nal cost function values imply a success rate of 78.9%. This
demonstrates the severe ambiguity issues associated with coma.
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Fig. 25. Probability density of the residual RMS WFE for the 228 total trials.
There is a relatively good ability to distinguish success (left mode) from failure
(right mode).
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Fig. 26. Probability density of the �nal cost for the 228 total trials. There is
reduced ability to distinguish success and failure compared to the residual RMS
WFE, implying some uniqueness problems.
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Fig. 27. Top, left to right: true wavefront, retrieved wavefront, di�erence.
Bottom: optimizer history, with

√
C on the lefthand y axis, solid lines, and

residual RMS WFE on the righthand y axis, dashed lines. The estimate is quite
high quality, and has only residual higher order coma. This is an example of a
relatively successful convergence, and has a di�erence of 0.00513 λ RMS.

6.3 Astigmatic Aberrations
The same process was used as in the comatic case to generate 228 astigmatic wavefronts,
which have varying combinations of angle of astigmatism in the pupil plane, magnitude of
astigmatism, and magnitude of spherical aberration. The results are similarly compiled
and presented in Figs. 28-31. More general success is observed. This is due to the unique
property of astigmatism to simply shift the MTF through focus along its axis. This e�ect is
highly distinct to that of other aberrations. The optimizer appears to struggle when overall
wavefront error is high. This may because the region of high MTF is su�ciently shifted to
not at all overlap with the starting guess, and thus adjusting astigmatism by a small delta
will not improve the cost function in a signi�cant way. Figure 32 shows the distribution of
residual RMS WFE and

√
C values. Signi�cant disagreement between them can be seen;

this is because the solutions are highly ambiguous when far from the truth.
The success rate, matching the requirement of λ/100 residual RMS WFE or better, is

64.5%. Evaluated via the cost function, this only rises to 71.1%. This implies astigmatism
does not have the same ambiguity issues coma does. It is likely that these values would be
highly improved by an embedded algorithm to produce better starting guesses.
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Fig. 28. Residual RMS WFE as a function of the orientation
of primary astigmatism in the pupil plane for the case where
there is no spherical aberration.
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Fig. 29. Residual RMS WFE as a function of the orientation
of primary coma in the pupil plane for the case where there
is 1/20 λ RMS of spherical aberration.
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Fig. 30. Residual RMS WFE as a function of the orientation
of primary coma in the pupil plane for the case where there
is 1/10 λ RMS of spherical aberration.
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Fig. 31. Residual RMS WFE as a function of the orientation
of primary coma in the pupil plane for the case where there
is 1/5 λ RMS of spherical aberration.
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Fig. 32. Top: distribution of residual RMS WFE values; bottom: distribution of
�nal

√
C values. The two do not agree, unlike the spherical case (near perfect

proportionality) or coma case (worse, but still reasonable proportionality). This
is likely to do with the higher azimuthal order creating worse ambiguity at
larger wavefront error levels.

6.4 Arbitrary Low Azimuthal Order Aberrations
500 Additional trials were performed with arbitrary combinations of coma, spherical
aberration, and astigmatism. Each had the noisy geometric series among its various
radial orders discussed in subsection 5.4 applied, with independent noise or fudge factor
distributions for each. The higher radial order variants of each aberration were enforced
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to be at an equal angle in the pupil plane to their lower radial order counterparts. While
this may not be completely realistic, it is more realistic than if these modes were free to
have any azimuthal orientation. The angle of coma and astigmatism were independent,
and drawn from uniform random distributions spanning [0,180]°. The level of success in
these trials was very low, and as such the presentation is relatively minimal.
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Fig. 33. Top: probability density of residual RMS WFE values, bottom: probabil-
ity density of

√
C values. The two appear reasonably well correlated, however

the overall success is low with very few falling near or to the left of the 10−3
level. The value of

√
C sometimes reached low values on the order of 10−4

while this never happened for the residual RMS WFE; this strongly implies the
existence of ambiguity near the global minimum.
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6.5 Experimental Trials
Five experimental trials were performed with a small set of Canon 35mm f/2 IS USM
lenses and a Trioptics Imagemaster MTF bench. A sample of the �ve is reported here. The
experimental details are provided in Appendix B.

The MTF was measured through-focus across a range of ±50 µm. It is shown in Figure 34.
Additionally, the wavelength of light, pupil amplitude, and illumination pro�le from the
collimator were also measured. The functionA from Equation 5 was modeled as the product
of a circle of appropriate diameter extracted from the pupil amplitude measurement, and a
2D Gaussian �t to the square root of the irradiance pattern measured from the collimator.
The factor of square root converts irradiance to electromagnetic �eld amplitude.
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Fig. 34. Experimental MTF data as a function of frequency and focus for the
tested lens. A Lanczos interpolation function is used to smooth the data for
display, but inter-focus interpolation is not done during optimization.

The complete basinhopping algorithm described in Subsection 5.3 was applied to the
data with up to 25 starting points for each segment of optimization. Several “bootstrapping”
strategies were tried, where a subset of terms are optimized for and additional terms
added after some had settled close to their correct value. The �nal path taken involved
optimization for Z4, Z9, and Z16 – defocus and spherical aberration up to sixth order. The
optimizer was then allowed to optimize for these terms in addition to trefoil, and �nally the
simultaneous addition of the coma and astigmatism terms. Figure 35 shows the wavefront
estimate at the end of each of these segments of optimization, each of which entails up to
25 starts at basinhopping. Figure 36 shows the convergence of the optimizer’s cost function
over time, with the square root taken. As a reminder, the square root of this type of cost
function is suggestive of the residual RMS WFE. Here, it reached a value suggestive of
about λ/43.

32



10 0 10
Pupil  [mm]

10

5

0

5

10

Pu
pi

l 
 [m

m
]

0.2
0.0
0.2
0.4
0.6
0.8
1.0

O
PD

 [
]

10 0 10
Pupil  [mm]

10

5

0

5

10

Pu
pi

l 
 [m

m
]

0.8

0.6

0.4

0.2

0.0

0.2

O
PD

 [
]

10 0 10
Pupil  [mm]

10

5

0

5

10

Pu
pi

l 
 [m

m
]

1.50
1.25
1.00
0.75
0.50
0.25

0.00
0.25

O
PD

 [
]

Z4 Z5 Z6 Z7 Z8 Z9
Z12 Z13 Z14 Z15 Z16 Z21 Z22 Z23 Z24 Z25Z10 Z11

0.3

0.2

0.1

0.0

0.1

A
m

pl
itu

de
 R

M
S 

[
]

Optimization segment
first
second
third

Fig. 35. Top left to right: predicted wavefront after the �rst, second, and �nal segment of
optimization. Bottom: orthonormal Fringe Zernike coe�cients, labeled �rst second third set of
iterations in the same order as above. It can be seen that when the comatic and astigmatic terms are
introduced, the value of Z4 remains stable, but all other terms included change. The stability of the
focus term even in error of higher order terms is important to some applications where precision
measurement of focus must resort to exotic means, such as wavefront sensing, and can only use
MTF data.
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Fig. 36. Convergence of the optimizer. Each line segment is the �nal iteration of the basinhopping
algorithm, so there is no expected continuity between the three. It can be seen that with the addition
of each new set of polynomials to work with, the optimizer is better able to produce a model that
matches the data. No further improvement was possible after the �nal point reached on the graph.
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The �nal model and the measured data are compared in Figure 37. The focus rolls
o� in the negative focus direction more slowly in the model, and some �ner features at
the positive focus direction are not present in the model. Using a similar script to the
one described in Appendix B, the through-focus PSF was captured to provide a more
robust comparison, as wavefront data for the OUT is unavailable. The notionally in focus
measured PSF is compared to its equivalent modeled one in Figure 38. In the model, Q has
been manipulated such that the sample spacing is equal to the measured PSF. Both are
better than Nyquist sampled.
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Fig. 37. Top: measured data, middle: retrieved MTF model, bottom: di�erence. Note that the data
and model are presented on a power-scaled axis to enhance “dark” features in the data, while the
di�erence is shown in a linear scale symmetric about 0 (perfect agreement).
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Fig. 38. Left: measured PSF, right: modeled PSF. The agreement between the measurement and
model is poor; this implies a so-called uniqueness problem. Note that the trefoil in the retrieved PSF
features “�ares” at small angles to the Cartesian axes. Note as well that these PSFs are presented on
nonlinear color scale to make more clear dim features.

Relatively severe ambiguity between coma and trefoil are likely the reason this experi-
ment failed. The defocused PSFs at the extremes of focus (not presented here) show trefoil
present in the measured PSFs, but it is much smaller than that which appears in the model.

7 Conclusions and Future Work
In this thesis, it was proposed to use “classical” MTF measurements with only tangential and
sagittal data to perform wavefront sensing. MTF-based wavefront sensing is a type of phase
retrieval algorithm and as such its success is sensitive to the design of the program. Four
candidate metrics that perform the comparison between the data and model were compared,
and the best – the sum of squares of di�erences – was selected. A normalization scheme
was developed such that the value of these cost functions is nearly exactly proportional to
the residual RMS error of the estimate. Critically, this allows the user to set an appropriate
cost function tolerance which is synonymous with the tolerance on the quality of wavefront
estimate produced. This property is only observed in this thesis in the case of rotationally
invariant Zernike modes, as there is insu�cient azimuthal information in the case of
just tangential and sagittal MTF for non rotationally invariant wavefronts to be properly
distinguished.

In excess of 3,000 simulations were performed to statistically evaluate the e�ectiveness
of this method. It was shown that it is overwhelmingly successful in the case of rotationally
invariant aberrations (spherical and defocus), with 100% success when the RMS WFE of
the wavefront optimized for is less than 0.2 λ. Success over the larger range [0, 0.35] λ
RMS remained high at 84.6%. Cases where the algorithm was not successful have complete
failure, with no convergence in cost function or residual RMS WFE.

In the case of non rotationally invariant aberrations, namely coma and astigmatism,
success was greatly reduced. Results including coma were only successful 32.5% of the time,
Judged by the cost function value instead of the residual RMS WFE, results including coma
would be said to be successful 78.9% of the time, but this is not true when the estimated
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and true wavefronts are compared, owing to ambiguity between primary coma (Z7 and Z8
in the Fringe Zernike notation) and its higher order variants, both in radial and azimuthal
order. Results were better with astigmatism, with 64.5% success. The cost function value
would suggest 71.1% success, indicating there are substantially fewer ambiguities with
astigmatism than with coma. It is possible that a relatively simple preprocessing of the
data to produce a better estimate of astigmatism would lead to a much higher success rate.
When spherical aberration, coma, and astigmatism were combined in arbitrary orientations
and magnitudes, the success rate was only 4.6%. The cost function suggests a success rate
of 50%, indicating severe ambiguity of the wavefront for a given cost function value.

An ensemble of experiments were performed with a commercial MTF bench and small
set of lenses of the same model. The appropriate MTF measurements were made, as well
as captures of the lens’ through-focus PSF to compare to the predicted PSFs. The PSFs
are a substitute for measurements of the true wavefront of the lens. In the example trial
shown, the cost function predicted λ/43 residual RMS WFE, however looking at the PSFs,
the error is clearly substantially larger. This is due to the ambiguities previously discussed.
The other experimental trials did not fare better.

From a physics perspective, the most important next step is the evaluation of how
many azimuths of the MTF are needed for the data to become su�ciently sampled to
resolve ambiguities. The translation from a PSF to MTF incurs the loss of Fourier phase;
this appears to be very well compensated by an extended number of focus planes. The
azimuthal under-sampling appears much more damaging. Of additional importance is
the more rigorous study of how many distinct frequencies or what frequency spacing is
required; the pitch of 10 cy/mm used in this thesis was arbitrary. Additional study of the
number of focus planes and focus range used should also be done.

From a computational perspective, the Zernike coe�cients could be re-expressed in
terms of their magnitude and angle. This will eliminate pairwise redundancy in the terms
when the magnitude is correct, but the orientation is wrong or vice-versa. In the x-y or
0-45° notation typically used, two terms must change, when there is a transformation that
requires only one to change. The temperature and step size parameters of the basinhopping
algorithm may also be tuned as these too were chosen by hand and no systematic study
was performed to optimize them.

Study should be done with reduced spatial frequency bandwidth, e.g. only 0 to 0.5
νc and a reduced number of focus planes to see if these break the algorithm. Additional
work should be performed to tune the through-focus range used, as the value of about
2 λ PV of defocus was chosen by intuition, not a rigorous study. Simulation with higher
azimuthal order aberrations should be done, but this is likely wasted e�ort unless better
azimuthal sampling of the MTF Is provided. Simulations should also be done that include
noise, though this becomes speci�c to the type of MTF measurement done (pinhole based,
slit based, slanted-edge, etc.).

The initial implementation of this algorithm typically works very quickly, returning
a result within �ve minutes on a laptop computer when estimating spherical aberration,
coma, and astigmatism. It is easily able to leverage the resources of a more powerful
machine to work more quickly, fully saturating one node per simulation on the University
of Rochester BlueHive cluster computer. Implementation of algorithmic di�erentiation
can improve performance by approximately 4x when spherical aberration, coma, and
astigmatism are estimated. Gains from this increase with the number of Zernike terms
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estimated. The program never returned an error and exited prematurely throughout all
simulations and experimental trials. As such, it can be recommended that this program
is ready for scienti�c and industrial use alike. Modi�cation would be required to include
more azimuths of MTF data, but these changes are not overwhelming in scale.
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A Fringe Zernike Polynomials

The Zernike polynomials are widely used in optical metrology and design as a convenient
radial basis set. The original and ANSI standard sets [53] require two indices, which has
led the development of alternative sets, among them the Noll, Zemax Standard, Fringe,
Born & Wolf, and Malacara sets. The Fringe set is the most popular in optical metrology,
and is used and reproduced in this thesis.

Index Name Norm Equation

1 Piston 1 1
2 Tip 2 ρ cos (θ )
3 Tilt 2 ρ sin (θ )
4 Power

√
3 2ρ2 − 1

5 Primary Astigmatism 0°
√
6 ρ2 cos (2θ )

6 Primary Astigmatism 45°
√
6 ρ2 sin (2θ )

7 Primary Coma X 2
√
2 (3ρ3 − 2ρ) cos (θ )

8 Primary Coma y 2
√
2 (3ρ3 − 2ρ) sin (θ )

9 Primary Spherical Aberration
√
5 6ρ4 − 6ρ2 + 1

10 Primary Trefoil X 2
√
2 ρ3 cos (3θ )

11 Primary Trefoil Y 2
√
2 ρ3 sin (3θ )

12 Secondary Astigmatism 0°
√
10 (4ρ4 − 3ρ2) cos (2θ )

13 Secondary Astigmatism 45°
√
10 (4ρ4 − 3ρ2) sin (2θ )

14 Secondary Coma X 2
√
3 (10ρ5 − 12ρ3 + 3ρ) cos (θ )

15 Secondary Coma Y 2
√
3 (10ρ5 − 12ρ3 + 3ρ) sin (θ )

16 Secondary Spherical Aberration
√
7 20ρ6 − 30ρ4 + 12ρ2 − 1

17 Primary Tetrafoil X
√
10 ρ4 cos (4θ )

18 Primary Tetrafoil Y
√
10 ρ4 sin (4θ )

19 Secondary Trefoil X 2
√
3 (5ρ5 − 4ρ3) cos (3θ )

20 Secondary Trefoil Y 2
√
3 (5ρ5 − 4ρ3) sin (3θ )

21 Tertiary Astigmatism 0°
√
14 (15ρ6 − 20ρ4 + 6ρ2) cos (2θ )

22 Tertiary Astigmatism 45°
√
14 (15ρ6 − 20ρ4 + 6ρ2) sin (2θ )

23 Tertiary Coma X 4 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ) cos (θ )
24 Tertiary Coma Y 4 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ) sin (θ )
25 Tertiary Spherical Aberration 3 70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1

26 Pentafoil X 2
√
3 ρ5 cos (5θ )

27 Pentafoil Y 2
√
3 ρ5 sin (5θ )

28 Secondary Tetrafoil X
√
14 (6ρ6 − 5ρ4) cos (4θ )

29 Secondary Tetrafoil Y
√
14 (6ρ6 − 5ρ4) sin (4θ )

30 Tertiary Trefoil X 4 (21ρ7 − 30ρ5 + 10ρ3) cos (3θ )
31 Tertiary Trefoil Y 4 (21ρ7 − 30ρ5 + 10ρ3) sin (3θ )
32 Quaternary Astigmatism 0° 3

√
2 (21ρ6 − 30ρ4 + 10ρ2) cos (2θ )

33 Quaternary Astigmatism 45° 3
√
2 (21ρ6 − 30ρ4 + 10ρ2) sin (2θ )

34 Quaternary Coma X 2
√
5 (126ρ9 − 280ρ7 + 210ρ5 − 60ρ3 + 5ρ) cos (θ )

35 Quaternary Coma Y 2
√
5 (126ρ9 − 280ρ7 + 210ρ5 − 60ρ3 + 5ρ) sin (θ )

36 Quaternary Spherical Aberration
√
11 252ρ10 − 630ρ8 + 560ρ6 − 210ρ4 + 30ρ2 − 1

Table 3. The 36 Fringe Zernike polynomials and their norms for unity RMS value over the unit
circle. ρ and θ are the normalized radial and azimuthal pupil coordinates. A line is drawn under
Z25, the highest order term used in this thesis. Terms 26-36 are reproduced for completeness.
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B Details of Experiment

Here we present the details of the experiment done to validate this method. It is our goal
that anyone be able to replicate the result, in part or in full, depending on their level of
access to instrumentation to perform these measurements. The selected lens is a Canon 35
mm f/2 IS USM, S/N 4430000379. Each sample of this lens model, like any other, will have
somewhat di�erent residual aberrations at any point in the �eld of view due to the reality
of as-built performance.

1 Setup
The lens was mounted to a Trioptics ImageMaster HR MTF bench, with the 50mm diameter
refractive collimator. The 546 nm narrowband spectral �lter was used to ensure monochro-
matic test conditions. The Center Sample Rotation macro was run in a feedback
loop with adjustment of the decenter controls of the mounting platform to ensure the
boresight axis of the OUT was matched to that de�ned by the collimator and microscope.
The boresight axis is a substitute for the optical axis in otherwise rotationally symmetric
optical systems that contain small tilts and decenters.

Fig. 39. The MTF bench used to make the measurement, with the OUT mounted. Motion can be
controlled as shown in Figure 1.
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The EFLMag test routine was used to measure the EFL 10 times with the 10..90 mm
reticle selected, and the average value taken.

The entrance pupil diameter (EPD) and pupil magni�cation were measured via a
modi�ed variant of the method described in ISO 517 [54]. A Zeiss 100 mm f/2 Makro-Planar
lens mounted to a Canon 6D camera and set to F/5.6 was used to image the entrance pupil.
This lens has a small chief ray angle, excellent optical performance in terms of resolution and
distortion, and is a suitable replacement for a bi-telecentric machine vision lens. The latter
is preferred, but the usage here of a normal lens is more broadly reproducible as a typical
optics lab does not have the preferred objective to perform dimensional measurements.
Without adjusting its focus, a ruler was placed at the best focus object plane and used to
calibrate the plate scale of the image. The diameter of the limiting aperture was computed
using subpixel coordinates, and this process repeated with the 35 mm lens set to F/5.6
for both the entrance and exit pupils to ascertain the pupil magni�cation. The entire exit
pupil may not be viewable from behind the lens’ image plane, so a reduced aperture of the
OUT or short working distance method is required to image the exit pupil and deduce the
pupil magni�cation. Figure 40 shows the source image used to compute the entrance pupil
diameter of the OUT.

Fig. 40. Image of the entrance pupil of the OUT used to measure the entrance pupil diameter. The
plate scale in the original is 25.4 µm per pixel. The small gradient visible in the left-hand side of the
pupil is related to small angular alignment between the test setup and the OUT. The slight texture
visible is due to imperfection in the di�user used.

A Hasselblad X1D-50c camera was used to measure the intensity pro�le of the beam
produced by the collimator by creating a 2x2 stitched panorama. This camera’s large, 44x33
mm sensor allows the capture of a minimal number of frames to cover the entire 50 mm
diameter beam. The raw images were developed in DCRaw [55] using the -D -T -4
command line �ags. This converts the manufacturer’s proprietary raw format to a 16-bit
linear TIFF �le with no other processing. A python script was used to extract the G1 green
color plane of each �le and export the results to an intermediate set of TIFF �les. These
were fed to Microsoft Image Composite Editor [56] which rendered a complete mosaic with

44



the default options. The illumination was found to be non-uniform, likely to do with the
cos4 law and the obliquity of the edge of the collimator aperture to the pinhole in its focal
plane. A Gaussian of the form in Equation 21 was �t to the data to an analytical amplitude
mask in the pupil plane, where σ is a normalized width parameter, found to be 1.075. Note
that in the argument of exp, ξ and η are normalized to span [−1, 1].

f (ξ ,η) = exp
(
ξ 2 + η2

σ 2

)
(21)
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Fig. 41. left: image of the beam from the collimator used to calibrate the intensity pro�le. Right:
1D slice through the x axis and analytic �t. The small shift in the −x direction and tilt in the data is
likely due to a small physical tilt in the test setup and attenuation from obliquity.

A custom script was used to measure the MTF at 21 focus points spanning a range of
±0.1mm. The script is reproduced below. The original .mht �les are available from the
primary author upon request, and can be read with the functionsread_trioptics_mtf
and read_trioptics_efl from prysm.io.

The EFL measurement may be repeated in a handful of seconds. the EPD measurement
takes a small number of minutes, but the result will vary no less than low double digit
microns (machining tolerances on a single surface) between samples of the same lens
model. Less than �ve minutes of time are required to produce the EFL, pupil, and MTF
dataset. The data is summarized in Table 4.

Complete script to ingest this data and feed it to the wavefront sensing algorithm is
also available upon request.

Parameter Value ± Unit

EFL 34.449 0.0013 mm
EPD 16.955 0.0128 mm

λ 0.546 0.0001 µm
Illumination Uniformity See Figure 41

Table 4. Non-MTF parameters measured
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2 MTFLab Script
Here the script used to automate measurement is reproduced. Trioptics’ software includes
its own scripting language which allows automation of various measurements, including
the MTF FFD described in subsubsection 2.3.3. In this case, the Through-Focus MTF routine
built into the software only allows the use of a single frequency at a time. This script
performs motion control and uses the regular MTF measurement routine to generate
an ensemble of MTF measurements. The focus range, number of steps, frequency pitch,
maximum frequency, and output �lenames are hard-code here. Readers can modify the
script with aParamBegin..ParamEnd block to introduce �exibility of these parameters.
The run time is approximately 10 seconds. Note that the number of points is speci�ed
twice; once as an integer for iterating, and again as a �oating point value due to issues
with mixed precision arithmetic as of version 4.8.0.9 of MTFLab. Both of these values must
be changed for correct behavior to be observed.
Proc Main

Dim nPoints, Integer, 21
Dim nPointsDbl, Double, 21.0
Dim focusRange, Double, 0.1
Dim maxFreq, Integer, 900
Dim freqPitch, Integer, 10

Dim focusStep, Double, 0.0
Dim refFocus, Double, 0
Dim currentFocus, Double, 0.0
Dim loopCounter, Integer, 0

Assign focusStep, focusRange
Mul focusStep, 2.0
Div focusStep, nPointsDbl

GetPosition "FocusPosition", refFocus
Add currentFocus, refFocus
Sub currentFocus, focusRange
MoveAbs "FocusPosition", currentFocus, 50
Report ClearAll
MTF 100, 2.0, maxFreq, freqPitch, "Both"
Report Save, "C:\Users\TRIOPTICS\Desktop\scriptreport", loopCounter, 1
Sub nPoints, 1

Loop nPoints
Add loopCounter, 1
Add currentFocus, focusStep
MoveAbs "FocusPosition", currentFocus, 50
Report ClearAll
MTF 100, 2.0, maxFreq, freqPitch, "Both"
Report Save, "C:\Users\TRIOPTICS\Desktop\scriptreport", loopCounter, 1

LoopEnd

MoveAbs "FocusPosition", refFocus, 50.0
Report ClearAll

ProcEnd
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